Influence of global warming on durability of corroding RC structures: A probabilistic approach

نویسندگان

  • Emilio Bastidas-Arteaga
  • Franck Schoefs
  • Mark G. Stewart
  • Xiaoming Wang
چکیده

Chloride ingress and carbonation cause corrosion of reinforced concrete (RC) structures affecting its operational life. Experimental evidence indicates that these deterioration processes are highly influenced by CO2 emissions and climatic conditions in the surrounding environment –i.e. temperature, humidity, etc. Since studies on global warming announce changes in climate, the impact of changing climate on RC durability should also be considered. This paper links RC deterioration mechanisms to CO2 emissions and global warming. Based on various studies on climate change, models for estimating the effect of CO2 emissions and temperature/humidity changes due to global warming are described. Furthermore, various scenarios of global warming that can be used to assess the effect of climate change in structural reliability are proposed. The proposed approach is then illustrated with a numerical example that calculates the probability of failure of a RC bridge beam for future climate scenarios. The paper then outlines some adaptation strategies, particularly focusing on the needs for risk-based selection of optimal adaptation measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the Performance of Corroding RC Bridge Decks: A Critical Review of Corrosion Propagation Models

Corrosion of steel reinforcement is one of the most prevalent causes of reinforced concrete (RC) structures deterioration in chloride-contaminated environments. As a result, evaluating the impact of any possible corrosion-induced damages to reinforced concrete bridges strongly affects management decisions: such as inspection, maintenance and repair actions. The corrosion propagation phase is a ...

متن کامل

Influence of weather and global warming in chloride ingress into concrete: a stochastic approach

Reinforced concrete (RC) structures are subject to environmental actions affecting their performance, serviceability and safety. Among these actions, chloride ingress leads to corrosion and has been recognized as a critical factor reducing the service life of RC structures. This paper presents a stochastic approach to study the influence of weather conditions and global warming on chloride ingr...

متن کامل

ارزیابی مدل های تخمین عمر مفید خدمت رسانی برای سازه های بتن مسلح در محیط دریایی خلیج فارس

Chloride ion ingress is one of the major problems that affect the durability of reinforced concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in marine areas has gained great significance in recent decades and various mathematical models for estimating the service life...

متن کامل

Probabilistic Approach to the Seismic Vulnerability of RC Frame Structures by the Development of Analytical Fragility Curves

Fragility curves are very useful in quantifying the physical and economic damage of buildings that have undergone an earthquake. This paper presents the development of analytical fragility curves representative of mid-rise residential structures built with reinforced concrete, taking into account the specific structural characteristics of Algerian buildings. The derivation of the analytical fra...

متن کامل

Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis

A stochastic analysis is developed to assess the temporal and spatial variability of pitting corrosion on the reliability of corroding reinforced concrete (RC) structures. The structure considered herein is a singly reinforced RC beam with Y16 or Y27 reinforcing bars. Experimental data obtained from corrosion tests are used to characterise the probability distribution of pit depth. The RC beam ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017